НОСОВ Евгений Васильевич

ЭКСПЕРИМЕНТАЛЬНО-МОРФОЛОГИЧЕСКОЕ ОБОСНОВАНИЕ ПРИМЕНЕНИЯ ИЗДЕЛИЙ ИЗ НАНОСТРУКТУРИРОВАННОГО ТИТАНА ДЛЯ ОПТИМИЗАЦИИ РЕПАРАТИВНОГО ОСТЕОГЕНЕЗА НИЖНЕЙ ЧЕЛЮСТИ

1.5.22. Клеточная биология, 3.1.7. Стоматология

Автореферат диссертации на соискание ученой степени кандидата медицинских наук

Работа выполнена в федеральном государственном бюджетном образовательном учреждении высшего образования «Оренбургский государственный медицинский университет» Министерства здравоохранения Российской Федерации

Заслуженный Научные руководители: науки РΦ, доктор деятель биологических профессор Стадников Абрамович, наук, Александр Заслуженный врач РФ, доктор медицинских наук, профессор Матчин Александр Артемьевич

Официальные оппоненты:

Одинцова Ирина Алексеевна заслуженный работник высшей школы Российской Федерации, доктор медицинских наук, профессор, заведующая кафедрой гистологии (с курсом эмбриологии) федерального государственного бюджетного военного образовательного учреждения высшего образования «Военно-медицинская академия имени С.М. Кирова» Министерства обороны Российской Федерации

Байриков Иван Михайлович член-корреспондент РАН, доктор медицинских наук, профессор, заведующий кафедрой челюстно-лицевой хирургии и стоматологии федерального государственного бюджетного образовательного учреждение высшего образования «Самарский государственный медицинский университет» Министерства здравоохранения Российской Федерации

Ведущая организация:

Федеральное государственное бюджетное образовательное учреждение высшего образования «Российский университет медицины» Министерства здравоохранения Российской Федерации

Защита диссертации состоится « » г. в __ часов на заседании диссертационного совета 21.2.049.02 при федеральном государственном бюджетном образовательном учреждении высшего образования «Оренбургский государственный медицинский университет» Министерства здравоохранения Российской Федерации (460014, г. Оренбург, ул. Советская, 6).

С диссертацией можно ознакомиться в библиотеке (460000, г. Оренбург, пр. Парковый, 7) и на сайте (http://www.orgma.ru) федерального государственного бюджетного образовательного учреждения высшего образования «Оренбургский государственный медицинский университет» Министерства здравоохранения Российской Федерации.

Автореферат разослан « » 2	025	Γ.
----------------------------	-----	----

Ученый секретарь диссертационного совета

доктор медицинских наук, доцент

Галеева Эльвира Науфатовна

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования. По данным мировой литературы в последнее десятилетие наблюдается устойчивая тенденция к росту челюстнолицевого травматизма в России, в странах Европы, Азии и Северной Америки. Эпидемиологические показатели механических повреждений челюстно-лицевых костей значительно варьируют в разных странах и регионах одного государства, при этом наиболее часто встречаются переломы нижней челюсти, составляющие по данным ведущих отечественных и зарубежных клиник от 67% до 92% от общего числа пострадавших [Безруков В.М., Лурье Т.М., 2000; Левенец А.А. и др., 2013; Воробьев А.А. и др., 2017; Лепилин А.В. и др., 2013, 2014, 2018; Ургуналиев Б.К. и др., 2019; Маркаров А.Э. и др., 2023; Kevin Adik et al., 2023].

В этой связи механические травмы челюстно-лицевой области продолжают оставаться серьезной социальной, экономической и медицинской проблемой общественного здравоохранения [Крохмаль С.В. и др., 2020; Шашков В.А. и др., 2021; Константинович М.А., 2024; Мурзаибраимов А.К., 2024; Azevedo A.B. et al., 1998; Brucoli M. et al., 2020; Patiguli Wusiman et al., 2020; Farzan R. et al., 2021; Sadhu Reddipogu J. et al., 2021; Mats Doving et al., 2022; Cha S. et al., 2022; Agbara R. et al., 2023; Faeze Sharifi et al., 2023].

Значительное число пациентов активного трудоспособного возраста с травмами мягких тканей и костей лица является причиной повышенного интереса исследователей к данной проблеме, тем более, что нередко травмы этой локализации являются сочетанными с утяжелением характера травмы [Миронов С.П. и др., 2019; Moreno J.C. et al., 2000; Aramanadka C. et al., 2021; Dicker R.A. et al., 2021; de Jager E. et al., 2022; Adam Schwartz et al., 2023].

Рост числа больных с травмами челюстно-лицевой области в структуре общего травматизма по данным литературы обусловлен интенсификацией труда, увеличением числа средств передвижения, доступных широкому кругу дорожно-транспортные населения, обуславливающих происшествия, ухудшением психоэмоционального контакта между жителями, в том числе с холодного или огнестрельного оружия, применением высокой частотой бытовой травмы [Байриков И.М. и др., 2017, 2018, 2024; Медведев Ю.А. и др., 2018; Голавский П.И. и др., 2021; Матчин А.А. и др., 2019, 2022, 2024; Ягмуров М.О. и др., 2025; Bertin E. et al., 2022; Feras Alqahtani et al., 2020; Leena Kannari et al., 2022; Nishimoto R.N. et al., 2021; Chris Singleton et al., 2022; Fabio Roccia et al., 2022; Hady Mohammadi et al., 2023].

Вопросы лечения больных с переломами костей лицевого скелета направлены на совершенствование методов лечения, позволяющих повысить эффективность при восстановлении анатомической непрерывности и формы челюсти, обеспечить нормальное взаимоотношение зубных рядов, эстетики лица, всех функций челюстно-лицевой области, сократить сроки заживления костной раны и ускорить реабилитацию пострадавших.

Важнейшим принципом успешного лечения травматологических больных является применение современной системы фиксации костных отломков,

основанной на единой теории остеосинтеза. Выполненные экспериментальные исследования по использованию жесткой внутренней фиксации конечностей позволили сформулировать четыре основных принципа быстрого восстановления формы и функции поврежденного органа: анатомическая репозиция костных отломков; функционально стабильная фиксация; сохранение кровоснабжения путем использования атравматических методик; ранняя, активная и безболезненная мобилизация [Peter D. et Mattheew Wolpoe, 2007].

В многочисленных экспериментальных и клинических исследованиях различные системы остеосинтеза костных сегментов с использованием нержавеющей стали, монолитного титана или биодеградируемых материалов получили достаточное широкое распространение [Байриков И.М., Лепилин А.В., 2018; Bell R.B. et al., 2006; Agarwal S.et al., 2016; Barzi Gareb et al., 2022; Kadircan Kahveci et al., 2022; Paris Liokatis et al., 2022; Shao X. et al., 2022; Rout P.K. et al., 2025].

При этом металлоостеосинтез титановыми конструкциями стал золотым стандартом лечения повреждений черепно-челюстно-лицевой области. Метод обеспечивает адекватную стабильность кости при использовании клинически приемлемых размеров мини-пластин и винтов для закрепления отломков [Горбачев Ф.А. и др., 2021; Яременко А.И. и др., 2021; Виіјѕ G.J. et al., 2006; Наегle F. et al., 2009]. Непосредственные и отдаленные результаты лечения не всегда подтверждают эффективность его применения в различных клинических ситуациях.

Широкое использование в челюстно-лицевой хирургии и стоматологии имплантатов из титана и его сплавов обусловлено высокой биотолерантностью, превосходными механическими и манипуляционными свойствами, способностью к остеоинтеграции, устойчивостью к коррозии [Матчин А.А. и др., 2015; Semenova I.P. et al., 2016; Jan Borys et al., 2017; Riviş M. et al., 2020; Matchin A.A. et al., 2023].

Ультраструктурное поведение титановых сплавов в тканях после фиксации костных отломков еще недостаточно хорошо исследовано и документировано [Acero J. et al., 1999]. Но появились сообщения, что в редких случаях наличие имплантатов, изготовленных из титановых сплавов для фиксации костных отломков, может вызывать различные побочные эффекты, связанные с коррозией титана [Roman Tsaryk et al., 2006].

Установлено, что даже спустя много лет после операции с использованием титановых мини-пластин и винтов у пациентов выявляются симптомы хронического воспаления в зоне фиксации отломков [Olmedo et al., 2008]. К хроническому воспалению тканей, прилегающих к мини-пластинам и винтам, могут привести повышенная продукция свободных радикалов и активных форм азота, нарушения оксидантного/антиоксидантного баланса под воздействием титановых имплантатов [Peters et al., 2007; Tsaryk et al., 2007; Olmedo et al., 2008]. Иногда пластины и винты тактильно ощущаются в тех отделах черепночелюстно-лицевой области, где мягкотканное покрытие ограничено, и

металлические изделия, особенно в детском возрасте, могут пальпироваться под кожей [Gareb B. et al., 2017].

Многочисленные исследования последних двух десятилетий показали, что эффективным методом повышения механических свойств, прочностных характеристик, упрочнения титана является применение методов интенсивных пластических деформаций (ИПД) и, в частности, метода равноканального углового прессования (РКУП), позволяющего получить объемные титановые заготовки с ультрамелкозернистой (УМЗ) структурой и формировать в объеме заготовок однородную УМЗ структуру с размерами зерен на наноуровне. Метод делает возможным получать объемные заготовки из титана Grade-4 с УМЗ структурой и пределом прочности до 1100...1200 Мпа [Валиев Р.З. и др., 2022; Клевцов Г.В. и др., 2023].

Использование ультрамелкозернистого титана в клинической медицине может стать вариантом ускорения регенерации костей, поскольку медицинские изделия, изготовленные из наноматериала, способствуют локальной биоактивности, улучшая рост кости, могут служить матрицами для стволовых клеток при получении остеолинии, что может позволить улучшить их дифференциацию.

Прочностные и антикоррозийные характеристики ультрамелкозернистого титана марки Grade-4 позволяют изготавливать из него более миниатюрные имплантаты с повышенной биофункциональностью, при этом биомедицинские характеристики УМЗ титана представлены лишь в немногочисленных in vitro и in vivo исследованиях [Клевцов Г.В. и др., 2016; Резяпова Л.Р. и др., 2021, 2023; Усманов Э.И. и др., 2021, 2023; Рааб Г.И. и др., 2021; Матчин А.А. и др., 2024; Nie F.L. et al., 2013; Valiev Ruslan Z. et al., 2014; Matchin A. et al., 2023].

В связи с этим актуальной проблемой челюстно-лицевой травматологии является исследование биомедицинских свойств мини-пластин и мини-винтов, изготовленных из ультрамелкозернистого титана марки Grade-4, применяемых для закрепления отломков при экспериментальных переломах нижней челюсти у кроликов.

Внедрение в клиническую практику медицинских изделий, изготовленных из ультрамелкозернистого титана, позволит уменьшить объем хирургического пособия, снизит опасность аллергических и негативных реакций, улучшит приживаемость имплантатов и ускорит реабилитацию пациентов в постоперационном периоде.

Все вышеизложенное определило цель и задачи настоящего исследования.

Цель исследования

Установить структурно-функциональные закономерности и особенности репаративной регенерации поврежденной нижней челюсти при закреплении отломков накостными титановыми конструкциями из ультрамелкозернистого титана.

Задачи исследования

- 1. Разработать модель экспериментального перелома нижней челюсти у кролика с последующей фиксацией отломков мини-пластинами и мини-винтами, изготовленными из ультрамелкозернистого титана марки Grade-4, или стандартными конструкциями фирмы ООО «Конмет».
- 2. Предложить новый вариант мини-пластин из наноструктурированного титана для остеосинтеза нижней челюсти.
- 3. Провести в динамике сравнительный анализ гистоморфологических изменений и особенностей репаративного остеогенеза в разные фазы раневого процесса в костной и окружающих челюсть мягких тканях после скрепления отломков.
- 4. Представить морфофункциональное обоснование эффективности закрепления отломков нижней челюсти мини-пластинами и мини-винтами из ультрамелкозернистого титана на основании лучевых, светооптических, ультраструктурных и иммуногистохимических (по показателям экспрессии прои антиапоптотических генов) методов исследования.
- 5. Обосновать целесообразность применения в клинике мини-пластин и мини-винтов из наноструктурированного титана при проведении операции остеосинтеза пациентам с переломами костей лицевого скелета.

Научная новизна исследования

На основании экспериментально-морфологических исследований впервые разработаны:

- мини-пластина из наноструктурированного титана для остеосинтеза нижней челюсти (патент на полезную модель №175 248 от 06.06.2017);
- -новый способ стимуляции репаративного остеогенеза при использовании изделий из наноструктурированного титана у животных (патент на изобретение №2706 033 от 19.11.2018);
- -мини-пластина для остеосинтеза нижней челюсти (патент на полезную модель № 214 691 от 10.11.2022).

Впервые на адекватной экспериментальной модели перелома нижней челюсти у кролика проведено комплексное морфофункциональное исследование закономерностей репаративной регенерации костных и мягких тканей при скреплении отломков мини-пластинами и мини-винтами, изготовленными из ультрамелкозернистого титана марки Grade-4 в сравнении с закреплением отломков мини-пластинами и мини-винтами фирмы ООО «Конмет».

иммуноморфологическая Впервые представлена характеристика нижнечелюстной кости И окружающих челюсть мягких тканей при использовании оперативного метода закрепления отломков. изменения структурно-функциональной организации в пределах клеточных дифферонов на уровне остеобластов, диапазона гисто- и органотипических потенций соединительной и костной тканей в процессе консолидации перелома нижнечелюстной кости.

На основе иммунногистохимических методов (оценка экспрессии генов p53, bcl2, caspasa3, ki67) и сканирующей электронной микроскопии

представлены и применены новые критерии оценки эффективности репаративного остеогенеза после остеосинтеза мини-пластиной и мини-винтами из ультрамелкозернистого титана.

Экспериментально обоснована целесообразность использования молекулярно-генетических и ультраструктурных (сканирующая электронная микроскопия) критериев, позволяющие оценить закономерности репаративного остеогенеза при заживлении костных ран.

На основе изучения гистохимических показателей, оценки соотношения клеточно-волокнистого компонента и тканевых изменений в челюсти и окружающих ее мягких тканях установлено оптимизирующее воздействие на процесс заживления перелома мини-пластин и мини-винтов из ультрамелкозернистого титана.

Результаты работы обосновывают возможность и показывают целесообразность дальнейшего изучения и применения медицинских изделий, изготовленных из ультрамелкозернистого титана, при оперативном лечении пациентов с переломами костей лицевого скелета.

Теоретическая и практическая значимость работы

Данная работа содержит фундаментальные данные по проблеме репаративной регенерации, имеющие прикладное значение. В результате проведенного комплексного экспериментально-морфологического исследования расширены и углублены существующие представления о характере и динамике процесса заживления перелома нижней челюсти при использовании мини-пластин и мини-винтов, изготовленных из ультрамелкозернистого титана марки Grade-4.

Данные о морфофункциональной организации клеточного и волокнистого компонента при травматическом процессе способствуют пониманию механизмов репаративной регенерации, позволяют прогностически оценить изменения в зоне повреждения в зависимости от срока и течения восстановительного периода.

Исследование зоны контакта костной ткани с титановыми конструкциями показало высокий интеграционный потенциал ультрамелкозернистых минипластин и мини-винтов. Превалирование процессов остеоиндукции и остерегенерации при их применении подтверждают целесообразность и преимущества использования данных изделий в челюстно-лицевой хирургии. Применение данных медицинских изделий в клинических условиях может существенно повысить эффективность лечения пациентов с повреждениями костей лицевого скелета.

Методология и методы исследования

Методология *in vivo* была выбрана в качестве оптимальной для исследования остеоинтеграционных свойств медицинских изделий из ультрамелкозернистого титана. При этом использовался комплекс методик, отвечающих поставленным целям и задачам. Полученные результаты анализировались современными методами статистической обработки в

соответствии с принципами доказательной медицины. Одобрено ЛЭК (протокол №77 от 19.02.2025).

Основные положения, выносимые на защиту

- 1. Установлены морфологические закономерности репаративных процессов в челюсти и окружающих мягких тканях при оперативном лечении переломов с учётом фазности течения раневого процесса и этапов репарации. Выявлены характерные реакции разных клеточных дифференов на повреждение.
- 2. Обоснован оригинальный метод скрепления отломков нижней челюсти мини-пластинами и мини-винтами из ультрамелкозернистого титана.
- 3. Светооптическими и иммунногистохимическими методами доказано оптимизирующее влияние ультрамелкозернистого титана на репаративный остеогенез в зоне перелома.
- 4. Оценка методом сканирующей электронной микроскопии основных характеристик поверхности мини-пластин и мини-винтов из ультрамелкозернистого титана Grade-4 позволяет оценить влияние шероховатости поверхности на их остеоинтеграционный потенциал, проследить процессы остеорепарации и остеинтеграции в динамике.
- 5. Применение медицинских изделий из УМЗ титана стимулирует репаративный остеогенез при лечении травматических повреждений.

Степень достоверности и апробация результатов

Положения, выносимые на защиту диссертационной работы, обоснованы материалами первичной документации и им соответствуют. Достоверность морфологических, результатов подтверждается данными иммуногистохимических и лучевых методов исследования, представленными в многочисленных статьях И выступлениях, подкреплены статистической обработкой полученных результатов применением современных компьютерных программ.

Основные положения диссертации доложены и обсуждены на II, III Всероссийских конференциях с международным участием студентов и молодых ученых в рамках «Дней молодежной медицинской науки ОрГМА» (Оренбург, 2015); на республиканской научно-практической конференции с международным участием «Медицинские материалы и имплантаты с памятью формы в челюстно-лицевой хирургии и стоматологии» (Душанбе, 2015); на II Всероссийской научной конференции студентов и молодых специалистов «Актуальные вопросы современной медицины: взгляд молодого специалиста» (Рязань, 2016); на XXI, XXII Международной конференции челюстно-лицевых хирургов и стоматологов «Новые технологии в стоматологии» (Санкт-Петербург, 2016, 2017); на LXIV Международной конференции «Актуальные проблемы прочности» (Екатеринбург, 2022); на LXI Международной научной конференции молодых учёных «Наука: Вчера, сегодня, завтра» (Актобе, 2022); научно-практической на Международной конференции рамках международного стоматологического фестиваля «Площадка безопасности

стоматологического пациента» (Белгород, 2022); на Всероссийской научнопрактической конференции, посвященной 100-летию со дня рождения профессора В.А. Малышева (Санкт-Петербург, 2022); на XVIII научнопрактической конференции молодых ученых и студентов ГОУ ТГМУ им. Абуали ибни Сино с международным участием (Душанбе, 2023); на VI Международном конгрессе стоматологов «Актуальные проблемы стоматологии и челюстно-лицевой хирургии» (Ташкент, 2023); на региональной научнопрактической конференции «Современные технологии в челюстно-лицевой хирургии и стоматологии» (Санкт-Петербург, 2023); на Международном медицинском форуме «Вузовская наука. Инновации» (Москва, 2024); на Всероссийской научной конференции «Гистогенез, реактивность и регенерация тканей» (Санкт-Петербург, 2024); на Всероссийской юбилейной научнопрактической конференции «Актуальные вопросы челюстно-лицевой хирургии и стоматологии», посвященной 95-летию со дня основания кафедры челюстнохирургии и хирургической стоматологии Военно-медицинской академии имени С.М. Кирова (Санкт-Петербург, 2024); на IX Всероссийском съезде анатомов, гистологов и эмбриологов России с международным участием «Фундаментальная и прикладная морфология в XXI веке», посвященном 95летию з.д.н. РФ И.И. Кагана и 100-летию со дня рождения академика РАМН и РАН, з.д.н. РФ М.Р. Сапина (Оренбург, 2025).

Диссертационная работа апробирована на заседании проблемной комиссии по морфологии человека Оренбургского государственного медицинского университета (протокол N 1 от 04.03.2025).

Личный вклад автора

Личное участие автора в проведенном научном исследовании выразилось в определении основной идеи, планировании и проведении всех серий эксперимента, статистической обработке, обобщении и анализе полученных результатов, публикации основных результатов в рецензируемых научных журналах, их обсуждении на ведущих российских и международных конференциях. Все экспериментальные результаты, представленные в диссертации, получены при его активном участии. Соавторы публикаций по теме диссертации принимали участие в анализе полученных результатов и подготовке публикаций.

Автор выражает глубокую благодарность д.т.н., профессору Клевцову Г.В. (ТГУ), заслуженному деятелю науки РФ и РБ, д.ф.-м.н., профессору Валиеву Р.З. (УУНиТ) за обсуждение, консультации и совместные публикации.

Работа проводилась в рамках выполнения государственного задания № 121032400027-4 «Разработка и исследование медицинских изделий нового поколения из высокопрочных наноструктурированных материалов».

Публикация результатов исследования

По теме диссертации опубликовано 35 научных работ, из них 10 работ в рецензируемых журналах, входящих в перечень ВАК, 2 работы входят в

международные базы цитирования Web of Science и Scopus, 25 - в прочие издания. Получен патент на изобретение № 2706033 С1 от 13.11.2019 «Способ стимуляции репаративного остеогенеза при использовании изделий из наноструктурированного титана у животных» и два патента на полезную модель №175248 U1 от 28.11.2017 «Мини-пластина из наноструктурированного титана для остеосинтеза нижней челюсти»; №214691 U1 от 10.11.2022 «Мини-пластина для остеосинтеза нижней челюсти».

Внедрение результатов исследования

Материалы диссертации используются в учебном процессе кафедр гистологии, цитологии и эмбриологии; стоматологии и челюстно-лицевой хирургии ФГБОУ ВО «Оренбургский государственный медицинский университет» Минздрава РФ; кафедры гистологии, биологии и патологической анатомии БУ ВО «Ханты-Мансийская государственная медицинская академия» Минздрава РФ; кафедры гистологии и эмбриологии ФГБОУ ВО «Самарский государственный медицинский университет» Минздрава РФ; кафедры гистологии, эмбриологии и цитологии ФГБОУ ВО «Южно-Уральский государственный медицинский университет» Минздрава РФ.

По результатам проведенного исследования оформлены два патента на полезную модель «Мини-пластина из наноструктурированного титана для остеосинтеза нижней челюсти» (№175248 от 28 ноября 2017 г.) и «Мини-пластина для остеосинтеза нижней челюсти» (№ 214691 от 10 ноября 2022 г.) и патент на изобретение «Способ стимуляции репаративного остеогенеза при использовании изделий из наноструктурированного титана у животных» (№ 2706033 С1 от 13.11.2019 г.) После сертификации данных медицинских изделий данные мини-пластины могут использоваться в клиниках челюстно-лицевой хирургии страны при лечении пациентов с переломами костей лицевого скелета.

Соответствие диссертации паспорту заявленной специальности

исследование соответствует Диссертационное паспорту Клеточная биология п.5 «Клеточные механизмы специальности 1.5.22. репликации и репарации» и п. 10 «Изучение закономерностей цито- и гистогенеза, клеточной дифференцировки, физиологической и репаративной регенерации тканей, а также, регуляции этих процессов» и паспорту научной специальности 3.1.7. Стоматология п.8 «Экспериментальные исследования по профилактики изучению этиологии, патогенеза, лечения И стоматологических заболеваний» и п.9 «Разработка и совершенствование стоматологических материалов, инструментов и оборудования».

Структура и объем диссертации

Диссертационная работа изложена в традиционном стиле на 123 страницах машинописного текста и состоит из введения, 3-х глав (клиникоморфологические аспекты репаративного остеогенеза челюстных костей (обзор литературы); материалы и методы исследования; результаты собственных

исследований), обсуждения полученных результатов, выводов, практических рекомендаций, списка литературы. Текст иллюстрирован 10 таблицами и 35 рисунками. Список литературы содержит 268 источник, из которых 106 отечественных и 162 иностранных.

СОДЕРЖАНИЕ РАБОТЫ

Материал и методы исследования

Исследование выполнено на кафедре гистологии, цитологии и эмбриологии ОрГМУ (зав. кафедрой з.д.н. РФ, д.б.н., профессор Стадников А.А., с 2025 г – к.б.н., доцент Блинова Е.В.), на кафедре стоматологии и челюстно-лицевой хирургии (зав. кафедрой, заслуженный врач РФ, д.м.н., профессор Матчин А.А.). Ультрамелкозернистый титан для изготовления опытных образцов минипластин и мини-винтов был предоставлен Уфимским университетом науки и технологий. Опытные модели мини-пластин и мини-винтов были изготовлены АО «ПО «Стрела» (г. Оренбург).

Механические испытания изготовленных опытных образцов проведены в ФГБОУ ВО «ТГУ» (г. Тольятти). Для достижения цели и решения поставленных задач были выполнены эксперименты на 65 кроликах самцах породы Шиншилла массой 2-3 кг в соответствии с таблицей 1.

Таблица 1 - Объем и структура исследования

Характер	Сроки наблюдений				
экспериментальных	7 сут	14 сут	21 сут	28 сут	40 сут
воздействий		Коли	чество живо	тных	
Контрольная группа	3	3	3	3	3
Серия 1. Создание	5	5	5	5	5
экспериментального					
перелома с фиксацией					
отломков мини-пластиной и					
мини-винтами из					
наноструктурированного					
ультрамелкозернистого					
титана (РКУП-Конформ)					
Серия 2. Создание	5	5	5	5	5
экспериментального					
перелома с фиксацией					
отломков мини-пластиной и					
мини-винтами ООО					
«Конмет»					
Итого:	13	13	13	13	13

Содержание, кормление, уход за животными и выведение их из эксперимента проводились с соблюдением правил обращения с лабораторными животными, установленными Директивой Европейского парламента и Совета Европейского Союза 2010/63/ЕС от 22 сентября 2010 г о защите животных, используемых в научных целях, а также Федеральным законом от 27 декабря

2018 г №498-ФЗ «Об ответственном обращении с животными и о внесении изменений в отдельные законодательные акты РФ» (ред. от 27.12.2019).

В 1-ой серии (25 животных) использовалась экспериментальная модель открытого перелома нижней челюсти, с фиксацией отломков с помощью наноструктурированных мини-пластины и 4 мини-винтов (ультрамелкозернистый титан марки Grade-4, изготовленный методом РКУП-Конформ).

Во 2-ой серии (25 животных) фиксация отломков осуществлялась стандартными мини-пластиной и 4 мини-винтами ООО «Конмет» (РУ от 08.12.2009 №ФСР 2009/06261).

У каждого животного под внутримышечным наркозом раствором «Телазол» 14-16 мг/кг (Zoetis, Spain) и инфильтрационной анестезией раствором Артикаина 1,7 мл (Бинергия, Россия) выполняли разрез мягких тканей параллельно телу нижней челюсти. Обнажалось тело нижней челюсти. Стоматологической фрезой выполнялась остеотомия кортикальной пластинки, а затем с помощью прямого долота создавалась модель полного перелома нижней челюсти. Отломки закрепляли с помощью мини-пластин и мини-винтов. Мягкие ткани послойно ушивались резорбируемым шовным материалом Викрил 4-0 (Ethicon, USA).

Контролем служила группа из 15 животных, у которых после создания такого же перелома костные отломки ничем не фиксировались.

Животных путем ингаляции летальной дозы эфира выводили из опыта на 7, 14, 21, 28, 40 сут после операции по 5 кроликов из каждой группы.

У выведенных из опыта животных экстирпировалась скрепленная минипластиной и мини-винтами нижняя челюсть с окружающими ее мягкими тканями. Оценка заживления перелома у каждого животного осуществлялась визуально и рентгенологически. Биоптаты из нижней челюсти и окружающих зону перелома мягких тканей были подвергнуты однотипной гистологической обработке на светооптическом и электронно-микроскопическом (сканирующая микроскопия) уровнях.

Для светооптической микроскопии материал фиксировали в 10% водном нейтрального формалина, спирт-формоле, затем проводили декальцинацию костных объектов в 4% растворе ЭДТА (трилон В) в течение 10 сут и дофиксировали вновь в 10% растворе нейтрального формалина. серийных Приготовление парафиновых срезов толшиной осуществлялось на ротационном микротоме МПС-2. Депарафинированные срезы окрашивали гематоксилином Майера и эозином.

Для идентификации клеток с признаками пролиферации производилась оценка экспрессии протеина Ki67. Для оценки экспрессии синтеза протеинов p53, caspasa 3 и антиапоптотического белка bcl-2 использовался метод иммунногистохимии. Для этого срезы инкубировали с соответствующими моноклональными антителами (наборы «Kit» фирмы ДАКО, Дания) в рабочем разведении 1:50. Докрашивание ядер клеток проводили 0.5% раствором метиленового зеленого на 0,1 М ацетатном буфере. Для визуализации структур использовался стрептавидин-биотиновый пероксидазный метод [Петров С.В. и

др., 2012]. Подсчет окрашенных иммунопозитивных клеток (в %) осуществлялся при просмотре не менее 1000 клеток в различных полях зрения микроскопа МБИ – 15, окуляр-вставка 25 мм², об. 90, ок. 10.

Кроме того, экстирпированная нижняя челюсть изучалась с использованием лучевых методов исследования. Выполнялись радиовизиограммы на радиовизиографе Xgenus digital, De Gotzen S.r.l. (Италия) на базе клиники ООО «Доктор» и ООО «Авиценна Дент» (Оренбург).

нижнечелюстной кости Биоптаты ИЗ исследованы сканирующего электронного микроскопа TESCAN MIRA LMU (Чехия) в центре микроскопии и микробиологии для выявления и поддержки одарённых детей «Гагарин» (Оренбург). Микроскоп оснащен автоэмиссионным катодом Шоттки высокой яркости, позволяющим получить изображения высокого разрешения, высокой контрастности с низким уровнем шумов с пространственным разрешением 1,2 нм при 30 кВ. SE-детектор использовался для получения изображений топографического контраста. Для ЭТОГО исследования экстирпированная нижняя челюсть кролика с титановыми конструкциями стоматологической фрезой на сегменты. пропиливался вдоль винта, кроме того, дополнительно мини-пластина делилась на 4 сегмента. Одна часть пластины механически отделялась от челюсти при сохранении в ней интегрированной в кость фрагментов мини-пластины и минивинта и оголении резьбы. Это позволило визуально оценить зону контакта минивинта и мини-пластины с нижнечелюстной костью.

Перед проведением микроскопии в установке для магнетронного распыления благородных металлов Q150R S Plus (Quorum Technologies Ltd., Чехия) на подготовленные к исследованию макропрепараты напылялся в течении 30 секунд проводящий слой золота.

Для оценки процессов биосовместимости и остеоинтеграции различных титановых изделий произведено исследование зоны контакта костной ткани с мини-пластинами и мини-винтами с помощью лазерного электронного конфокального микроскопа Lext OLS 4000 (Olympus, Япония). Исследование производилось в Тольяттинском государственном университете (НИИ Прогрессивных технологий, директор Мерсон Д.Л.) при различном увеличении.

Морфометрические исследования выполнены на гистопрепаратах с использованием исследовательского цифрового микроскопа Levenhuk D870T и цифровой камеры (Levenhuk Digital Camera, 8.0 Мпикс., USA) с программой «Измерение размеров» ToupView (Levenhuk, USA).

Статистическая обработка материала осуществлялась с применением программы Statistica 10.0 (StatSoft, США). Для описания данных изначально проводился анализ характера распределения при помощи критерия Шапиро – Уилка. Распределение считалось приближенным к нормальному при р> 0,05. В случаях, когда распределение было близко к нормальному, описание центральной тенденции проводилось при помощи средней арифметической величины, а разнообразия — при помощи стандартного отклонения. В работе представлено в формате «М±SD». Если распределение отличалось от

нормального, центральная тенденция определялась по медиане, а разнообразие — по межквартильному интервалу. Представлено в формате «Ме [Q25; Q75]». Для оценки уровня статистической значимости различий между связанными группами применялся расчет критерия Фридмана; между несвязанными группами — критерий Манна—Уитни. Различия считались значимыми при р <0,05.

Результаты собственных исследований и их обсуждение

Проведенный анализ радиовизиограмм и компьютерных томограмм, выполненных кроликам после закрепления отломков нижнечелюстной кости титановыми конструкциями, подтвердил ценность данных методов при исследовании процесса заживления перелома и остеоинтеграции различных титановых фиксаторов. Выявлена динамика сокращения времени консолидации перелома, зафиксированного с помощью пластин из наноструктурированного титана по сравнению с изделиями «Конмет» (к 21 сут линия перелома не прослеживается в серии с УМЗ пластинами, в отличии серии с мини-пластинами «Конмет»). Применение этих методик позволило оценить степень консолидации перелома на разных сроках эксперимента.

На рентгенограммах в аксиальной и боковой проекции установлено, что через 40 сут отсутствовали признаки деструкции костной ткани и патологических процессов в области зубов в обеих сериях эксперимента в соответствии с рисунком 1.

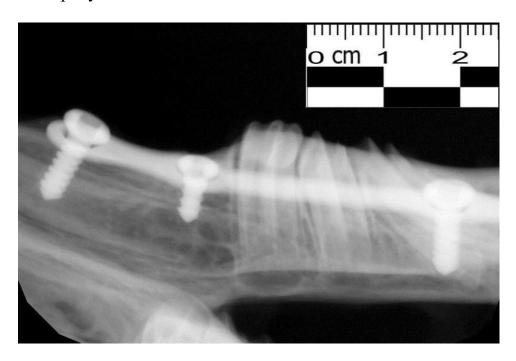


Рисунок 1 — Радиовизиограмма области перелома нижней челюсти после остеосинтеза мини-пластиной и мини-винтами из наноструктурированного титана в аксиальной проекции

Дополнительно проведена конусно-лучевая компьютерная томография (КЛКТ) экстирпированной нижней челюсти на томографе Planmeca (Финляндия)

на базе центра «Парацельс» (Оренбург). На рисунке 2 представлен интерфейс просмотровой программы в режиме «дентальная имплантация».

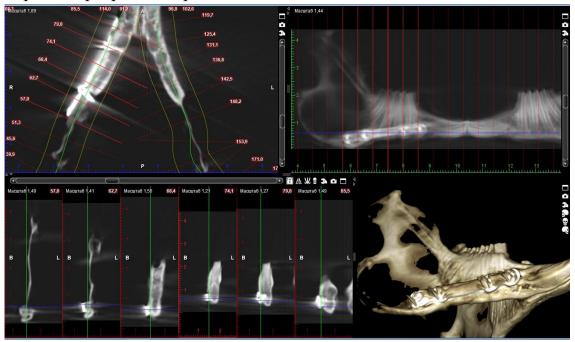


Рисунок 2 – КЛКТ нижней челюсти кролика на 40 сут

Результаты КЛКТ челюстей в коронарной, аксиальной и сагиттальной проекциях, а также в режиме панорамного изображения показали консолидацию модели перелома нижней челюсти, отсутствие деструктивных изменений костной ткани и зубов в контакте с титановой конструкцией в обеих сериях на 40 сут.

Выполнено исследование области контакта титановых изделий с костной тканью, а также состояния поверхности извлечённых из костных блоков титановых конструкций на наличие интегрированных костных структур с помощью лазерного электронного сканирующего конфокального микроскопа (ЛЭМ) Lext OLS 4000 (Япония).

Были изучены костные блоки в контакте с мини-винтами из УМЗ титана и мини-винтами производства ООО «Конмет» (Россия), извлечённые из костных блоков мини-винты на наличие интегрированных костных структур на их резьбовой части, а также поверхность фрагмента мини-пластины, контактировавшей с нижней челюстью, на наличие интегрированных костных структур.

При большем увеличении резьбовой части блока с ноноструктурированным титановым мини-винтом визуализируется плотный контакт поверхности резьбы с костной тканью, которая вросла в область между витками резьбы.

Для оценки рельефа области контакта титанового изделия с костным блоком изображение может быть представлено в трёхмерном формате, что изображено на рисунке 4.

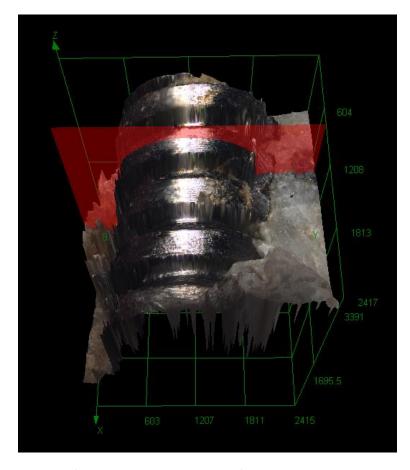


Рисунок 4 — Область контакта резьбы наноструктурированного титанового мини-винта с костной тканью в 3D формате. ЛЭМ

При исследовании поверхности пластины из наноструктурного титана, которая контактировала с поверхностью кости, нами обнаружены множественные фрагменты интегрированной костной ткани, в 3D формате визуализируется сложный рельеф поверхности (рисунок 5), при большем увеличении рельеф приобретает вид «снежных шапок». На аналогичной поверхности мини-пластин «Конмет» фрагментов интегрированной кости не обнаружено в соответствии с рисунком 6.

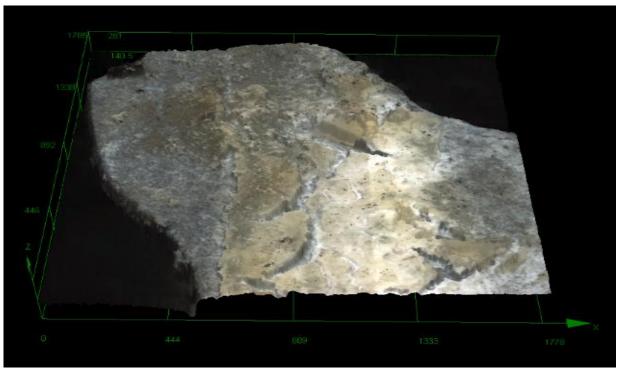


Рисунок 5 – Поверхность наноструктурированной титановой мини-пластины в 3D формате. ЛЭМ

Возможности ЛЭМ позволяют измерить шероховатость поверхности пластин, прилегающей к кости. Так параметр шероховатости (Rz) поверхности пластин «Конмет» составляет в среднем 3,4 µm, а наноструктурированных пластин – 9,0 µm.

Гистологические исследования позволили проследить динамику костнораневого процесса при заживлении переломов нижней челюсти, зафиксированных накостными мини-пластинами и мини-винтами. Восстановление целостности поврежденной челюсти происходит вследствие

пролиферации клеток камбиального слоя надкостницы и малодифференцированных мезенхимальных стромальных костномозговых клеток в соответствии с рисунком 7.

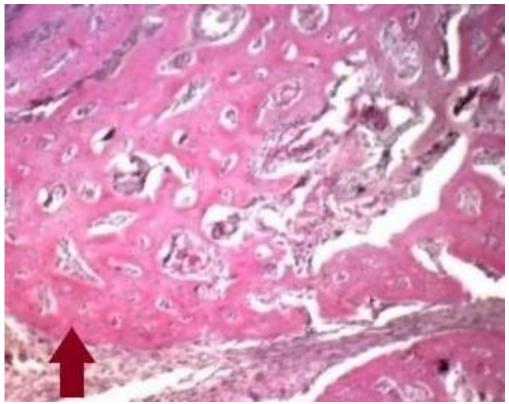


Рисунок 7 — Фрагмент нижней челюсти кролика (заводские мини-пластины) на 14-е сутки. Регенерат в области имплантата из наноструктурированного титана. Фиксация: 10% p-p нейтрального формалина, окраска гематоксилином Майера и эозином. Об.40, ок.10. Стрелкой показано формирование костных балок

В условиях 7–14-х сут опыта после закрепления отломков нижней челюсти эксперимента формируется пул остеобластов микроциркуляторной сети сосудов челюсти. Вдоль них образуются первичные костные балочки, характерные для ретикулофиброзной костной ткани в соответствии с рисунками 8, 9. Формирующаяся сеть трабекул была связана с краями костной раны и включает в свой состав $8.3\pm0.6\%$ остеобластов, $5.7\pm0.7\%$ остеоцитов, 3,9±0.5% остеокластов. Таким образом, между структурами, сломанной челюсти, образуется зафиксированными фрагментами предварительная костная мозоль без признаков ee трансформации в пластинчатую костную ткань. При этом значительная часть остеобластов подвергается атрофии и постепенно исчезает из зоны повреждения нижней челюсти. Происходит созревание грубоволокнистой (ретикулофиброзной) костной ткани с постепенной ее остеогенной перестройкой и построением на ее основе остеоилных балочек.

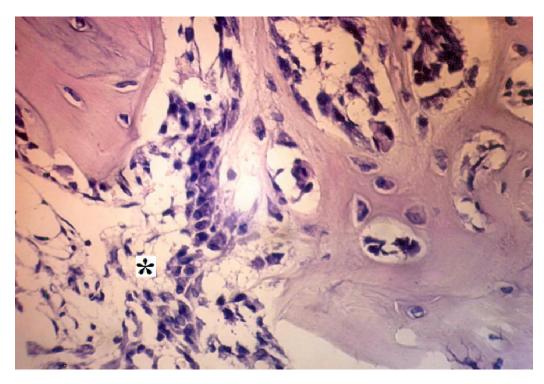


Рисунок 8 — Фрагмент перелома нижней челюсти через 7 сут. Фиксация: 10% p-p нейтрального формалина, окраска гематоксилином Майера и эозином. Об. 40, ок. 10. Обозначения: * — врастание малодифференцированной соединительной ткани между костными отломками

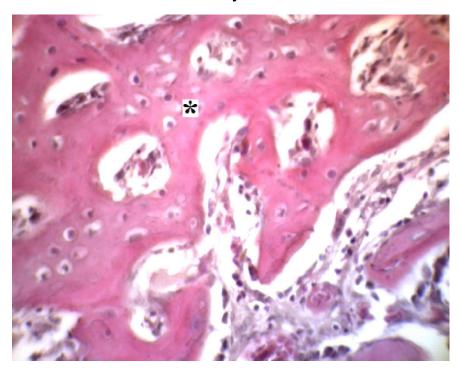


Рисунок 9 — Регенерат в области перелома нижней челюсти кролика на 7-е сут. Фиксация: 10% p-p нейтрального формалина, окраска гематоксилином Майера и эозином. Об. 40, ок. 10. Обозначения: * — формирование костных балок

Следует отметить, что в серии с использованием заводских пластин к 7 сут в краевых участках поврежденной нижней челюсти сохранялись признаки выраженного остеопороза, особенно в кортикальной пластинке, которая резко истончилась. Надкостница была утолщена в основном за счет фиброзного слоя, тогда как сосудистый ее слой был слабо выражен.

Как известно [Нузова О.Б., 2017; Xiaoming Sun, P. D. Kaufman., 2018; Borys J., Maciejczyk M., Antonowicz B. et al., 2019; Portes J., Gunha K. S. G., da Silva L. E et al., 2020], тяжелое воспаление и апоптоз являются одними из основных факторов, ответственных за нарушение остеоинтеграции, а также за отторжение имплантатов, а белок Ki-67 широко используется в качестве маркера пролиферации. В этой связи нами проведено исследование активности генов Ki-67, Bcl-2, саѕраѕа3, p53. Установлено, что использование мини-пластин, изготовленных из наноструктурированного титана по сравнению с мини-пластинами заводского производства, выявило активность генов Ki-67 и Bcl-2 у остеобластов и эндотелиоцитов в зоне остеоинтеграции. При этом данные процессы протекали на фоне угнетения антиапоптотических генов в соответствии с таблицами 2.3.

Таблица 2 – Распределение иммунопозитивных остеобластов в зоне остеосинтеза титановыми пластинами в различные сроки эксперимента (Me [Q25; Q75] или М

± SD в зависимости от характера распределения)

Сроки эксперимента						
Группы	7 сут	14 сут	21 сут	28 сут	40 сут	р
		Cas	pasa3			
Группа А	2,7 [2,6; 2,8]*	4,1 [4,0; 4,2]*	3,0 [3,0; 3,1]*	2,5 [2,0; 2,6]	2,1 [2,0; 2,2]	0,002
Группа Б	1,1 [1,0; 1,1]*	2,1 [2,1; 2,2]*	2,3 [2,0; 2,4]*	2,0 [1,9; 2,0]	2,2] 0,0	0,001
		ŗ	53			
Группа А	2,98±0,08*	3,58±0,36*	3,58±0,11*	3,10±0,07*	2,44±0,18*	<0,001
Группа Б	1,86±0,11*	1,88±0,11*	4,02±0,16*	1,70±0,07*	1,46±0,11*	<0,001
	bcl2					
Группа А	0,0	2,06±0,15*	0,0	1,12±0,15*	2,06±0,11	<0,001
Группа Б	3,20±0,10	3,06±0,11*	4,18±0,08	3,26±0,11*	0	<0,001
ki67						
Группа А	0,0	1,72±0,08*	1,90±0,16*	0,0	0,0	<0,001
Группа Б	2,80±0,19	3,38±0,15*	3,54±0,18*	0,0	0,0	<0,001

Примечание: А — применение пластин ООО «Конмет»; Б — применение пластин из наноструктурированного титана. Поле зрения: окуляр-вставка $0,25 \text{ мм}^2$, об. 40, ок. 10. р по вертикали — уровень статистической значимости изменений параметров в динамике; * - уровень статистической значимости различий между группами A и Б р <0,01.

Таблица 3 — Распределение иммунопозитивных эндотелиоцитов в зоне остеосинтеза титановыми пластинами в различные сроки эксперимента (Ме [Q25; Q75] или $M \pm SD$ в зависимости от характера распределения)

Сроки эксперимента						
Группы	7 сут	14 сут	21 сут	28 сут	40 сут	p
		Ca	spasa3			
Группа	1,6 [1,6;	2,0 [1,9;	2,2 [2,2;	1,8 [1,7;	1,7 [1,7;	0,002
A	1,7]*	2,1]*	2,3]*	1,8]*	1,8]	0,002
Группа	0,5 [0,5;	1,1 [1,1;	1,1 [0,9;	2,4 [2,4;	0,0	0,001
Б	0,5]*	1,2]*	1,2]*	2,5]*		0,001
			p53			
Группа А	2,20±0,12*	3,06±0,11*	3,14±0,27*	1,56±0,11*	2,06±0,11*	<0,001
Группа Б	1,22±0,13*	1,16±0,18*	1,56±0,11*	2,06±0,11*	0,40±0,10*	<0,001
		1	bel2			
Группа А	0,0	0,0	2,48±0,19*	0,0	0,0	<0,001
Группа Б	3,20±0,23	4,14±0,11	3,10±0,07*	2,78±0,08	0	<0,001
ki67						
Группа А	0,0	2,18±0,08*	1,74±0,11*	0,0	0,0	<0,001
Группа Б	3,22±0,19	5,20±0,23*	2,02±0,11*	2,02±0,18	0,90±0,16	<0,001

Примечание: А — применение пластин ООО «Конмет»; Б — применение пластин из наноструктурированного титана. Поле зрения: окуляр-вставка $0,25~\rm mm^2$, об. 40, ок. 10. р по вертикали — уровень статистической значимости изменений параметров в динамике; * - уровень статистической значимости различий между группами A и Б р <0,01.

Во всех парных сравнениях по количеству клеток в поле зрения для группы A и группы Б имеются статистически значимые различия (p<0,05), за исключением сравнения по количеству эндотелиоцитов с маркером p53 на 40 сутки (p=1,0).

Повышенные показатели апоптоза (по показателям экспрессии синтеза caspasa3 и p53) остеобластов и эндотелиальных клеток свидетельствуют о нарушении цитодифференцировки указанных клеточных элементов, что не наблюдается в группе животных, у которых использованы винты и пластины из наноструктурированного титана. Уменьшение апоптоза у остеобластов и эндотелиальных клеток (по показателям экспрессии bcl2 и ki67) свидетельствует

об оптимизации цитодифференцировки указанных клеточных элементов, и хорошем прикреплении наноструктурированного титанового материала к кости. Отсутствие клеток с маркерами генов bcl2 и ki67 в группе с заводскими пластинами подтверждает недостаточную прогностическую эффективность фиксации данных пластин в костной ткани за счёт остеоинтеграции. Большее количество клеток с маркёрами генов саѕраѕа3 и p53 и наличие клеток bcl2 и ki67 в контрольной группе по сравнению с группами A и Б свидетельствует о наличии воспалительных явлений у животных без фиксации отломков нижней челюсти в соответствии с таблицей 4.

Таблица 4 — Распределение иммунопозитивных остеобластов и эндотелиоцитов в контрольной группе. 7 сут.

		Количество клеток в поле зрения
остеобласты	Caspasa3	2,6±0,01
	p53	4,2±0,03
	bcl2	1,1±0,01
	ki67	1,2±0,02
эндотелиоциты	Caspasa3	2,2±0,02
	p53	1,8±0,01
	bcl2	1,4±0,01
	ki67	1,9±0,01

Поле зрения: окуляр-вставка $0,25~\text{мм}^2$, об. 40, ок. 10. Различия данных в сравнительных группах являются значимыми (р $\leq 0,01$)

Пролиферативный потенциал эндотелиоцитов и остеобластов при использовании конструкций из титана представлен в таблице 5.

Таблица 5 — Уровень экспрессии синтеза Ki67 (подсчёт иммунопозитивных клеток в усл. поля зрения микроскопа 0,25 мм², об. 40, ок. 10). Сроки наблюдения 14 сут

	Наноструктурированный	ООО «Конмет»
	титан	
Эндотелиоциты	4,2±0,5	1,8±0,1
Остеобласты	5,5±1,1	2,2±0,2

Поверхности титановых конструкций в контакте с костной тканью изучались с помощью сканирующего электронного микроскопа TESCAN MIRA LMU (Чехия) на базе «Центра микроскопии и микробиологии» центра для выявления и поддержки одарённых детей «Гагарин» (Оренбург).

При изучении поверхности мини-пластины из наноструктурированного титана на сканирующем электронном микроскопе выявлено наличие тканевых структур на поверхности изделия толщиной около 25-50 µm с наличием волокнистых и клеточных структур, покрывающих её сплошным слоем без оголения металлической поверхности в соответствии с рисунком 10.

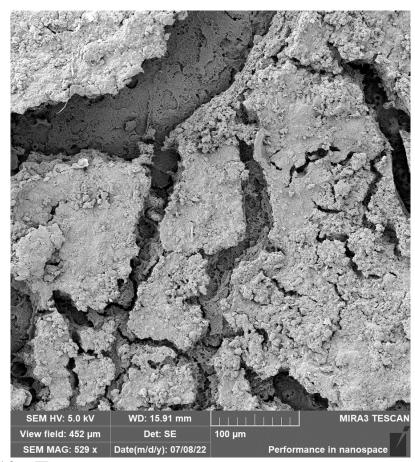


Рисунок 10 — Поверхность мини-пластины из наноструктурированного титана. СЭМ

При изучении металлической поверхности пластины свободной от значительной части костной ткани наблюдаются фрагменты костных балок, интегрированных в микрорельеф пластины с толщиной выростов до 12 µm в соответствии с рисунком 11.

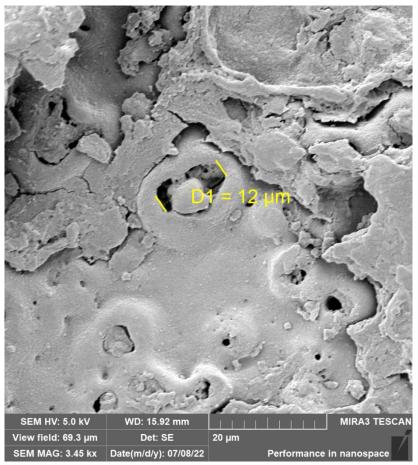


Рисунок 11 — Поверхность мини-пластины из наноструктурированного титана. Измерение диаметра остеоноподобной структуры. СЭМ

В области между витками резьбы мини-винтов из наноструктурированного титана в контакте с костной тканью обнаружены плотные тканевые структуры, заполняющие объём между витками слоем толщиной более 50 µm.

Изучение области контакта мини-винта «Конмет» с окружающими тканями показало наличие соединительной ткани с преобладанием волокнистых структур и единичными элементами костных балок, с расширенными лакунами между ними.

Исследование области контакта титановых изделий с костной тканью, а также состояния поверхности извлечённых из костных блоков титановых конструкций с помощью лазерного электронного сканирующего конфокального микроскопа Lext OLS 4000 показывает наличие костных структур на поверхности изделий на различных увеличениях. Наилучшее качество изображения показали образцы с минимальным перепадом высот, например, поверхность мини-пластины. Изучение сложных и неровных структур, таких как костные блоки и извлеченные из них титановые изделия занимало больше времени при настройке микроскопа и давало больше шумов в изображении, особенно в 3D формате, при этом визуализация поверхности и оценка структур позволяет использовать данный метод в оценке остеоинтеграционных свойств титановых изделий.

При сравнении образцов из наноструктурированного титана и титана «Конмет» определяется большая минерализация и меньшее количество волокнистых структур у наноструктурированного титана, что выражалось в площади поверхности с интегрированной костной тканью. Ткани с преобладанием соединительнотканных структур и меньшей минерализацией выглядели как ткани коричневого цвета.

Наличие и характер тканевых структур на поверхности изделий, визуализированные сканирующей электронной микроскопией, конфокальной электронной микроскопией, позволяют судить о высоких адгезивных свойствах наноструктурированного УМЗ титана и его потенциале к формированию плотных костных структур по типу остеоинтеграции. Сравнение состояния костной ткани в контакте с мини-винтами из наноструктурированного титана и мини-винтов «Конмет» показало увеличение плотности костных балок у изделий из наноструктурированного титана.

выводы

- 1. Методами растровой электронной микроскопии, сканирующей зондовой микроскопии сравнительно установлены особенности наноструктурированного титана и титановых конструкций, используемых в челюстно-лицевой хирургии (по показателям микроструктуры и топографии поверхности, прочностным параметрам, химическому составу).
- 2. Результаты светооптического, электронномикроскопического, рентгенологического анализа вместе с показателями экспрессии про- и антиапоптотических генов клеток является одним из доказательств оценки эффективности репаративного остеогенеза.
- 3. Применение наноструктурированных титановых мини-пластин и минивинтов при закреплении отломков нижней челюсти оптимизирует фазы воспалительного процесса в зоне перелома, что проявилось в понижении апоптозной доминанты остеобластов и эндотелиальных клеток (по показателям экспрессии гена Ki-67) и способствует формированию в зоне перелома органотипического регенерата.
- 4. Методами иммуногистохимии (оценка экспрессии синтеза про- и антиапоптотических протеинов p53, bcl2, caspase3), а также сканирующей электронной микроскопией обосновано оптимизирующее влияние минипластины и мини-винтов из наноструктурированного титана на репаративный остеогенез, приводящее к их остеоинтеграции.
- 5. В условиях перелома нижней челюсти у экспериментальных животных с закреплением отломков с помощью мини-пластин и мини-винтов из наноструктурированного титана оптимизируются процессы репаративного остеогенеза, что вероятно связано с технологическими особенностями предложенного наноструктурированного титана.

ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ

Морфологические данные об изменениях, выявленных в области перелома нижней челюсти с постоянной иммобилизацией отломков с помощью минипластины и мини-винтов, углубляют знания о репаративных остеогенезах, клеточных и тканевых критериях процессов остеоинтеграции, роли материала конструкции в процессе репарации, что следует учитывать при разработке методов лечении пациентов с травматическими повреждениями челюстнолицевой области.

Полученные результаты обосновывают новый эффективный метод оптимизации репаративных гистогенезов за счёт остеоинтеграционных свойств поверхности конструкций из наноструктурированного УМЗ титана в зоне перелома челюстных костей, что даёт возможность проведения его дальнейших доклинических испытаний.

ПЕРСПЕКТИВЫ ДАЛЬНЕЙШЕЙ РАЗРАБОТКИ ТЕМЫ

Конструкции и инструменты, изготовленные из наноструктурированного ультрамелкозернистого титана марки Grade-4, полученного методом РКУП-Комформ, целесообразно использовать вместо конструкций из титановых сплавов при лечении и реабилитации пациентов не только с повреждениями костей лицевого скелета, но и у пациентов с врожденными и приобретенными деформациями костей лица и в дентальной имплантации.

Публикации по теме диссертации, входящие в список ВАК

- 1. Матчин, А.А. Морфологические аспекты репаративного остеогенеза при использовании наноструктурированного титанового имплантата [Текст] /А.А. Матчин, Г.В. Клевцов, А.А. Стадников, Е.Д. Мерсон., И.А. Михайлова., **Е.В. Носов** // Морфология. − 2014. − №3. − С. 126.(К4)
- 2. Матчин, А.А. Особенности репаративного остеогенеза при закреплении отломков нижней челюсти мини-пластинами и мини-шурупами, изготовленными из наноструктурированного титана [Текст]/А.А. Матчин, А.А. Стадников, Г.В. Клевцов, **Е.В. Носов**, Е.Д. Мерсон // Морфология. − 2016. − №3. − С.134-135.(К4)
- 3. Матчин, А.А. Морфологическая и иммуногистохимическая характеристика процессов заживления экспериментальных переломов нижней челюсти [Текст]/ А.А. Матчин, А.А. Стадников, **Е.В. Носов**, С.Х. Кириакиди// Журнал анатомии и гистопатологии. 2019. Т.8, №1. С 44-48.(К1)
- 4. Матчин, А.А. Морфофункциональная оценка реорганизации нонапептидэргических гипоталамических нейросекреторных центров при экспериментальных переломах нижней челюсти [Текст]/ А.А. Матчин, **Е.В. Носов**, С.Х. Кириакиди // Морфология. 2020. №2-3. С. 137.(К4)
- 5. Klevtsov, G. V. Strength and fracture mechanism of nanostructured metal materials for medical applications / G.V. Klevtsov, R.Z. Valiev, M.V. Fesenyuk, N.A. Klevtsova, M.N. Tyurkov, A.A. Matchin, **E.V. Nosov** // Letters on Materials. 2022. Vol. 12, No. 4(48). P. 493-498. (K4)

- 6. Матчин, А.А. Применение сканирующей электронной микроскопии в изучении репаративного остеогенеза при использовании наноструктурированного титана [Текст]/ А.А. Матчин, А.А. Стадников, **Е.В. Носов**, Г.В. Клевцов // Цитология. − 2022. − Т. 64, № 3. − С. 286.(К4)
- 7. Матчин, А.А. Экспериментально-гистологическое обоснование использования наноструктурированных изделий в челюстно-лицевой хирургии [Текст]/ А.А. Матчин, А.А. Стадников, **Е.В. Носов**, Е.В. Блинова, М.Ф. Рыскулов, Г.В. Клевцов // Журнал анатомии и гистопатологии. 2024. Т.13, №3. С.41-48. (К1)
- 8. **Носов, Е.В.** Экспериментально-гистологическое обоснование возможности применения наноструктурированного титана для оптимизации репаративного остеогенеза нижней челюсти [Текст]/ **Е.В. Носов**, А.А. Матчин, А.А. Стадников, Г.В. Клевцов, Р.З. Валиев//Оренбургский медицинский вестник. − 2025. Т.ХІІІ. №2(50).Приложение. С.242.

Публикации по теме диссертации, входящие в список Scopus

- 1. Matchin, A.A. Features of reparative processes in the tissue of the mandible by using nanostructured titanium constructions in the experiment [Tekct]/ A.A. Matchin, A.A. Stadnikov, E.V. Nosov, S.V. Severinova //Annals of Anatomy Anatomischer Anzeiger. − 2020. − № I. − C.77.(K2)
- 2. Matchin A.A. In Vivo Studies of Medical Implants for Maxillofacial Surgery Produced from Nanostructured Titanium [Teκcτ]/ Alexander A. Matchin, **Evgeniy V. Nosov**, Alexander A. Stadnikov, Gennadiy V. Klevtsov, Luiza R. Rezyapova, Natalia A. Sayapina, Elena V. Blinova, and Ruslan Z. Valiev // ACS Biomaterials Science & Engineering. 2023. №9. P. 6138-6145.(K1)

Статьи и материалы, опубликованные в прочих изданиях

- 1. **Носов, Е.В**. Экспериментальное исследование репаративного остеогенеза у кроликов при использовании титановых имплантатов [Текст]/ Е.В. Носов, Д.А. Давлетова// Альманах молодой науки. 2014. № 4. С. 40-44.
- 2. Матчин, А.А Экспериментально-морфологическое обоснование применения титановых медицинских имплантатов в стоматологии [Текст]/ А.А. Матчин, А.А. Стадников, Г.В. Клевцов, **Е.В. Носов**// Медицинские материалы и имплантаты с памятью формы в челюстно-лицевой хирургии и стоматологии. Материалы республиканской научно-практической конференции с международным участием. Душанбе, 2015. С. 89-91.
- 3. **Носов, Е.В.** Репаративный остеогенез тканей челюстно-лицевой области при остеосинтезе экспериментальных переломов пластинами, изготовленными из наноструктурированного титана [Текст]/ Е.В. Носов, А.А. Матчин, А.А. Стадников, Г.В. Клевцов//Актуальные вопросы современной медицины: взгляд молодого специалиста. Материалы II Всероссийской научной конференции студентов и молодых специалистов. ФГБОУ ВО Рязанский государственный медицинский университет им. академика И.П. Павлова, 2016. С. 129-131.

- 4. Матчин, А.А. Особенности репаративного остеогенеза тканей челюстнолицевой области при использовании имплантатов и пластин, изготовленных ИЗ наноструктурированного эксперименте [Текст]/ титана A.A. Матчин, E.B. Носов, A.A. Стадников, Г.В. Клевцов, Е.Д. Мерсон // Новые технологии стоматологии. Материалы XXI В Международной конференции челюстно-лицевых хирургов и стоматологов, 2016. – C. 94-95.
- 5. **Носов, Е.В.** Влияние наноструктурированных изделий на процессы их интеграции в кость при экспериментальных переломах нижней челюсти [Текст]/ Е.В. Носов, А.А. Матчин, А.А. Стадников Г.В. Клевцов // Новые технологии в стоматологии. Материалы XXII Международной конференции челюстно-лицевых хирургов и стоматологов. Санкт-Петербург, 2017. С. 86.
- 6. Носов, Е.В. Морфологические особенности репаративных гистогенезов в области экспериментального перелома нижней челюсти кроликов при мини-пластинами [Текст]/ иммобилизации титановыми Е.В. Носов, А.А. Матчин, А.А. Стадников, Г.В. Клевцов// Материалы Всероссийской научной конференции «Современные проблемы гистологии и тканей». Под P.B. патологии скелетных ред. Деева. Рязанский государственный медицинский университет имени академика И.П. Павлова – Рязань, 2018. – С. 67-68.
- 7. Матчин, А.А. Характеристика репаративных процессов в зоне экспериментального перелома нижней челюсти животных [Текст]/ А.А. Матчин, А.А., Стадников, **Е.В. Носов**, С.Х. Кириакиди// Оренбургский медицинский вестник. 2019. T.VII. №4(28) C.33-35.
- 8. Матчин, А.А Гипоталамическая нонапептидергическая нейросекреция и репаративный остеогенез [Текст]/ А.А. Матчин, А.А. Стадников, **Е.В. Носов**, С.Х. Кириакиди// Оперативная хирургия и клиническая анатомия (Пироговский научный журнал), 2019. Т. 3. № 2. С. 74.
- 9. Клевцов, Г.В. Винт для закрепления пластин при остеосинтезе костей в челюстно-лицевой хирургии и травматологии [Текст]/ Г.В. Клевцов, Д.Л. Мерсон, Н.А. Клевцова, А.А. Матчин, **Е.В. Носов** //Сборник научных статей по итогам работы Международного научного форума, 2020. Т.1. С.97-99.
- 10. Матчин, А.А. Экспериментально-морфологическое обоснование применения новых медицинских технологий в челюстно-лицевой хирургии [Текст]/ А.А. Матчин, А.А. Стадников, **Е.В. Носов**, Г.В. Клевцов, С.В. Гречихина //Journal of Science. Lyon, 2020. №10. С.41-45.
- 11. Матчин, А.А. Разработка и исследование медицинских изделий нового поколения из высокопрочного наноструктурированного материала [Текст]/ А.А. Матчин, **Е.В. Носов**, Г.В. Клевцов, А.А. Стадников// Збірник центру наукових публикацій "Велес" за матеріалами VIII міжнародноі наковопрактичноі конференції: "Літні наукові читания", 2020. С.57-64.
- 12. Матчин, А.А. Окситоцин и репаративные процессы в тканях челюстнолицевой области в условиях экспериментального перелома [Текст]/ А.А. Матчин, А.А. Стадников, **Е.В. Носов** [и др.]// Вопросы морфологии XXI века:

- Сб. научных трудов Всероссийской научной конференции, Санкт-Петербург, 01–31 мая 2021 года. Выпуск 6. Санкт-Петербург, 2021. С. 48-52.
- 13. Матчин, А.А. Экспериментально-морфологическое обоснование использования титановых мини-пластин для остеосинтеза переломов нижней челюсти, изготовленных из высокопрочного наноструктурированного материала [Текст]/ А.А. Матчин, А.А. Стадников, **Е.В. Носов**, Г.В. Клевцов // Актуальные вопросы стоматологии: Сб. научных трудов. Самара, 2021. С. 169-173.
- 14. Matchin A.A., Stadnikov A.A., **Nosov E.V**. Application of scanning electron microscopy in the study of osteointegration properties of// Proceedings of the Electronic Research Conference «International Scientific Solutions 2022», March 23. New York: Infinity publishing, 2022. P. 98-105.
- 15. Матчин, А.А. Остеосинтез экспериментальных переломов нижней челюсти мини-пластинами из наноструктурированного титана [Текст]/ А.А. Матчин, А.А. Стадников, **Е.В. Носов**, Г.В. Клевцов // Актуальные вопросы современной медицины: материалы VI международной научно-практической конференции прикаспийских государств. Астрахань, 2022. С. 60-64.
- 16. Матчин, А.А. Иммуногистохимическая характеристика репаративных процессов в зоне экспериментального перелома нижней челюсти [Текст]/ А.А. Матчин, А.А. Стадников, **Е.В. Носов** [и др.] // Паринские чтения 2022: сб. трудов Национального конгресса с международным участием. Минск: Белорусский государственный медицинский университет, 2022. С. 474-479.
- 17. Носов Е.В. О репаративных процессах в зоне экспериментального перелома нижней челюсти у животных [Текст]/ Е.В. Носов, Е.В. Блинова, А.А. Матчин, А.А. Стадников // Стоматологическая весна в Белгороде-2022: Сб. трудов Международной научно-практической конференции международного стоматологического фестиваля «Площадка безопасности пациента», посвященного 100-летию стоматологического Московского медико-стоматологического университета государственного им. Евдокимова, Белгород, 09 июня 2022 года. – Белгород: Белгородский государственный национальный исследовательский университет, 2022. – С. 173-175.
- 18. Матчин, А.А. Структура травматизма, организация помощи и реабилитации больных с переломами костей лица [Текст]/ А. А. Матчин, **Е.В. Носов**, Е.Г. Мац, С.Х. Кариакиди // Актуальные вопросы челюстно-лицевой хирургии и стоматологии: материалы Всероссийской научно-практической конференции, посвященной 100-летию со дня рождения профессора В.А. Малышева. Санкт-Петербург, 2022. С. 164-169.
- 19. **Носов, Е.В.** Компьютерная томография в изучении процесса консолидации экспериментальных переломов нижней челюсти [Текст]/ Е.В. Носов, Е.Г. Мац, О.Н. Исаева // Материалы XVII научно-практической конференции молодых ученых и студентов ГОУ «ТГМУ им. Абуали ибни Сино» с международным участием. Душанбе, 2022. С. 27-28.

- 20. **Носов, Е.В**. Рентгенологическая характеристика консолидации экспериментальных переломов при использовании наноструктурированных титановых пластин [Текст]/ Е.В. Носов, Е.П. Муллова // Наука и инновации в медицине-2023: Сборник материалов XVIII научно-практической конференции молодых ученых и студентов ГОУ ТГМУ им. Абуали ибни Сино с международным участием. Душанбе, 2023. Том 2. С. 34-35.
- 21. Тюрьков, М.Н. Влияние наноструктурирования титана на механические свойства медицинских изделий [Текст]/ М.Н. Тюрьков, Г.В. Клевцов, Р.З. Валиев, Н.А. Клевцова, М.В. Фесенюк, А.А. Матчин, **Е.В. Носов**, Л.Д. Ястребова// Физическое материаловедение. Сборник материалов XI международной школы. Тольятти, 2023. С. 108-109.
- 22. Матчин, А.А. Наноструктурированный титан для остеосинтеза экспериментальных переломов нижней челюсти [Текст]/ А.А. Матчин, **Е.В. Носов**, А.А. Стадников, Г.В. Клевцов // Современные технологии в челюстнолицевой хирургии и стоматологии: Материалы региональной научнопрактической конференции, Санкт-Петербург, 2023. С. 70-76.
- 23. **Носов, Е.В.** Характеристики репаративных процессов в зоне экспериментального перелома нижней челюсти [Текст]/ Е.В. Носов, Е.В. Блинова // Альманах молодой науки. 2023. № 4(51). С. 19-21.
- 24. Матчин, А.А. Репаративные процессы в тканях челюстно-лицевой области при использовании наноструктурированного титана [Текст]/ Матчин, А.А. Стадников, А.А., **Носов, Е.В.**, Клевцов, Г.В. // Медицина и инновации. − 2023. −№ 2(1). − C.123-133.
- 25. Матчин, А.А. Медицинские изделия из наноструктурированного титана марки Grade-4 для челюстно-лицевой хирургии и стоматологии [Текст]/ Матчин, А.А., Е.В. Носов, А.А. Стадников, Г.В. Клевцов, Р.З. Валиев Актуальные челюстно-лицевой хирургии И стоматологии: материалы Всероссийской юбилейной научно-практической конференции «Актуальные вопросы челюстно-лицевой хирургии и стоматологии», посвященной 95кафедры челюстно-лицевой ДНЯ основания хирургической стоматологии Военно-медицинской академии имени С.М. Кирова, 20-21 ноября 2024 г./ под ред. Г.А. Гребнева, В.А. Железняка, В.А. Гука. СПб.: ВМедА им. С.М. Кирова, 2024. – С.93-99.

Патенты по теме диссертации

- 1.«Мини-пластина из наноструктурированного титана для остеосинтеза нижней челюсти» № 175248 U1 Российская Федерация, МПК A61B 17/80.: № 2017119948: заявл. 06.06.2017 : опубл. 28.11.2017 / Е. В. Носов, А. А. Матчин, А. А. Стадников, Г. В. Клевцов;
- 2. «Способ стимуляции репаративного остеогенеза при использовании изделий из наноструктурированного титана у животных» № 2706033 С1 Российская Федерация, МПК G09B 23/28.: № 2018140849 : заявл. 19.11.2018 : опубл. 13.11.2019 / Е. В. Носов, А. А. Матчин, А. А. Стадников, В. И. Ким.

3. «Мини-пластина для остеосинтеза нижней челюсти» № 214691 U1 Российская Федерация, МПК A61B 17/80. : № 2021128351 : заявл. 27.09.2021: опубл. 10.11.2022 / A. A. Матчин, Е. В. Носов, Г. В. Клевцов.